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XVIIL. On some new Methods of investigating the Sums of

“several Classes of infinite Series. By Charles Babbage, Esq.
A.M. F.R.S.

Read April 1, 1819.

THE processes which it is the object of this paper to explain,
were discovered several years since; but certain difficulties
connected with the subject, which I was at that time unable
to explain, and which were equally inexplicable to several of
my friends, to whom I had communicated these methods,
induced me to defer publishing them, until I could offer some
satisfactory solution.

These observations refer more particularly to the second
method which I have detailed in this paper, and which may
not inappropriately be called the method of expanding hori-
zontally and summing vertically. Some traces of this method
may, perhaps, be found in former writers, and particularly
in a paper by Professor Vince, ¢ On the Summation of Se-
ries,” printed in the Philosophical Transactions for 1791 ; but
there exists this peculiarity in that which I have employed, that
after a certain number of the vertical columns are summed,
all the remainder either vanish, or else have some common
factor. This method, which I emplbyed about the year 1812,
gave the values of a variety of series whose sums had not
hitherto been known, most of which were apparently correct,
but some of the consequences which followed were evidently
erroneous. About this time, Mr. HerscHEL, to whom I had
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250 Mr. BABBAGE’s new methods of investigaling the

communicated these anomalous results, by following a very
different course, arrived at several general theorems, which,
when applied to the series I had obtained, gave the same
results. This coincidence at first increased my confidence
in the values so discovered, and I continued to examine the
reason why my own formula were in some cases defective.
Mr. HerscrEL’s method was published in the Philosophical
Transactions for 1814; and it was not until some time after
thatI perceived, that although the investigations were very
different, the fundamental principle was the same in both
methods. This induced me to attempt summing the same
series by a direct process, and I succeeded in obtaining their
sums by integration relative to finite differences, aided by
certain peculiar artifices. The results obtained by this new
plan, which is the first treated of in this paper, coincided with
those already found, and seemed to confirm their truth, with-
out in the least indicating the cause of the error: this cause
however I now began to suspect, and, after some enquiry,
I was at length able to detect. I have found that the method
of expanding horizontally and summing vertically, will always
lead to correct results, provided a certain series which I have
pointed out, is finite. I have also shown how to express this
series by a definite integral; and when this integral or this
series has a finite value, the method may be depended on.
In case this series or this definite integral is not finite, then
the value of the series* multiplied by zero, must be added to

* The investigation of this series is generallya task of considerable difficulty. I
‘have however given an example, wherein the correction thus found, added to the
sum indicated by the method we are considering, gives the true value of the series;
which in this case is one whose sum has been found by Euler,
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the sum given by this method. In this latter case, however,
the mode of summation which I have proposed, is not well
adapted for giving the sums of series; its greatest advantage
is felt when the integral or series alluded to is finite : but
even in this case the criterion I have pointed out is not use-
- less, for it serves to except certain particular values of the
variables, which would give incorrect results. Without this
criterion, or without something equivalent to it, I am inclined
to think that the principle on which- this method is founded,
“although it will probably in many cases give accurate results,
will in others produce such as are not only numerically but
symbolically untrue. It is worthy of remark, that the me-
‘thod of expanding horizontally and summing vertically, in many
instances, gives precisely the same formulz as the direct pro-
cess of integration; yet that that method attaches limitations
to them, which are necessary to their accuracy, but whlch are
not indicated by the method last mentioned.
Before I proceed to explain these two processes, it will be
convenient to prove that the values of all series of the forms -

sin 0)"‘ _(sin 20)~ (sin 30"
Azl HAY s +A.7:3 ey + &

(cos 26)*
cos 0)"‘ (cos 20" (cos 30)"
(sm oy + M Gin 207" + A‘Za(sm 30 + &e.

depend on series of the form
3):& + A 008 29)1: + acc

" sind sin 26
A (mo),-g- Az gy + &

and o
«A (81n0)"+A(3m29)“ oy T+ &

cos 20
A.Z‘ (sin 5)" +M (sin 26) + &c.
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or else they depend partly on these and partly on other
series, containing the powers of the sines or cosines of an arc
in arithmetical progression in their numerators, which is a
species whose sums are easily found. For the sake of brevnty,
I shall make use of the general term of any series with the

characteristic S prefixed to it to denote that series. Begin-

(sm H)m

(o y e observe that when

ning then with the series SAz‘

. m is an even number, we have _

. m
j(sin 80} ,{ 1—{cos iO)‘} i1 mapa ;1

&c (a)

MM 2 s
SAr
+ 24 (cosip)"™4

this series will always terminate when m is an even number ;
and if m is greater than #, the last term will have no cosines
in its denominator: if m= 7, the last term wxll be SAx‘ and if

mis less than n, the last term will be SA2¥ ———: so that in
i (cos zO)M
all cases when m is an even number, the series in questxon

will depend on series of the form SAx' w)ﬂ, or on otherq
¥

whose sums are known ‘

Let us now consider.the case of m = an odd number, then

we have ; p—

i, q 1==(cos i) 2
i (sin 80)" i sin { } ——
SA : = SAx ~ (cos i) -

i (coszey'

— ; (sin ib m=—1 ; sin ib e R | i sin i smzo
=SAz I SAT I - SAr +&c.(b)

Thls series always terminates when m is an odd number ; and:
in a similar manner we shall find the two following :
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m

{ 1—(sin iG)"/ } z —_

SAx' (cos i)™ SAx'

sin 6)7 (sin 70)"
....'SAx' - — ZSAxi—t 25 A —&c, (¢
(sm CIXDINNE i (sin i9)""2+ 2.4 ;  (sin z())"""'4 -+ ()
When m is an even number, and M1

. (cos ity l cos 1'9%r 1 (sin ié)’} 2 =
SA (sin 8" = SA.Z‘ ' (sin )"

; 9 Mo ¥ . cos i Ml . M=} ;  cosib .
-—SA T SAz -+ SAz' —==>—&c, (d
(sin i6) 2 7 (sin iO)"—z o4 7 (sin z'O)"""" ( )

When m is an odd number.

Let us now propose to investigate the sum of the series

Az Ax* Ax3
b3 2 3

(Sin e)u + (Siﬂ ze)n + (Sin 39),‘ &C.
Assume Yr = Az 4 Azr* 4+ Az’ } &c.
1 2 3

Put v** for £ ; then it becomes
Yo’ = Av** 4 Av* 4 Av*™ 4 &c.
1 2 3

Integrate both sides, observing that £v**=— i -; then we have

v,, -l— &ec.
Integrate again, and after the n' mtegratlon we shall have
= A e+ A=y Ty + A(vo = + &

Now letv = cos 9 + 1/ —1 sin §; then our equation becomes

S =
X

__.] -—-I

2=t YAt 2 6Xmn3n

(21/ —1 >n =" \”22——A (sin (sin 0)" + A (sin (sin 20 + A G (sm 36)" + &e.
Put 2 - = — for z, and we have

o1/ 1 \2 2z4n
(2V/—1)" 374 '—A(sm 7 T4 (sm 29)" +A(sm sy + &
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x : Xt E k
= é(sinkﬁ)” + zA (sin 20)" + ?(sin 30 + &e. (1)

If after the integration we had put ' instead of », and then

v=c08 § + v/—1 sin §, we should have found
zx -qa: -caa

(""2$/""‘1)'i 2”’4’7’ = A (sm o+ A (sm 26)" + A (3"l (sin 30 + &e.

-| —q,

= A (sm oy + A (sm zef' + A (sm 3G)" + (2)

Neither of the mtegrals exhlbxted in (1) and (2) are inte-
grable in the most simple cases, and it is only by their com-
bination that I have been able to obtain the sums of any series.

Let us suppose A=1, A=—1, A=1, A= —1, &c. then
2 3 4
zz+n —2.% we il

v

28410 v ‘
Vo —_ —and v~ ———— also let n=1
1+'02z+" x+v—'zz -2 3 : .

“then the difference of the two series is

(V—r)s] T o doed i
| (g2t 1ot siné  sinzp sin 30

but the integral on the left side of this equation becomes
(2v/—1) 2(1) which is equal to 2v/—1 (2+): hence smce

log »
2= T%g-;, we have .
log x it a2 -—m :c’—a:
V-l{ zlogv+ } sin8  sin 20 + sm30+&c
‘If x =1, b==0, and since log v.==§ ¢/ —1, our series becomes
. 3 -2 =8
log z__x—z .z"-—-w Ly ez
9 sinb  sinzb + sin 39 — &e. ‘ (3)

let x==cos §'+/—1, sin ¢ ; then, since log z will become
¢ /— 1, by dividing both sides by 2 /—1, we shall have

o __ sin 6’ sin 20 sin 30 .
X sin 20 + - &ec. (4’)

0~ sinb sin 30

The series (g) is integrable when multiplied by , and this
operation may be repeated any number of tlmes. the first
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operation produces
-3 -2
(log x)* L 2% 4x .r3+x
5 x¢ 7 T &c.

-, T 1sind zsin20 3803

‘the value of the constant ¢, which is equal to the series
I

1 1
1 sin § —zsin29+3sin39

€==2{ -—-&c.}

I
cannot be determined from this equation, but by a second

multiplication by fi; and again integrating, it may readily be
found: this second operation gives

- ;=% 2 -3
(log x)3 log . &= e 23 -
2.3.0 + 1 (1: + g T — &e

*sin 0 2°sin 28 +3 sin 30
Ifw=1, ¢==0, putx == cos § 4+ ¢/ —1 sin 4, then we have

Gyory +w—: c=ov—1{ f—ht h—&. b=y 52

From this equation the value of ¢ may be found ; it is
1

1§ 6 +1
c=7{z+25F]

The value of ¢ thus found, we have the series
1

. S - -3
(log 2)* 1 { 6 =+ r4x 4z a¥ o \
‘ 6 + ] -3-+QS i } 1sin b zsin29+3sin39 &e. (5)

2.
and
(log )3 log z¢ 62 +1 r—z" z* — . B
xz39+ {?+QST} 1*sind zsmze+3 2 sin 30 —&e. (6)
In the ﬂrst of these put z=cos § 4 /—1 sin §, and it be-

comes — __+ S cot b _ cozt 20 + cot3 38 — &e. (7)

* Throughout the course of this Paper I shall have continual occasion to employ
the series — — — + —
1741. 22}1 3271

bers of BervoviLLy, and the powers of %, and for the sake of brevity I shall always

X +1
denote them by S g

= &c.; they can always be expressed by means of the num-
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By continuing to multiply (g) by %’-” and integrating, it is easy

to perceive that we should arrive at the two following theo-
rems—

k kh—
(log x)* (log 2)**—2
5.2..2k.9 + 1.2...2k—2 C+&C' +c ==
2k—1
nta :t"ﬂ-l-;.'z 23+ z
=1 . . ok i — & (8)
1 sin 9 —sin 20 3 sin 30
k-1 2k—1
(log )***7 | (log 2) loge . __
1.2..2k4- 1.9 + Tmb‘-l-&c. + ¢ =
1 2k—1
1'-—;?‘ :l'"-—.;” z3 .;.z's
2k = 2k — &c.
1%%sin 8 2°"%in 20 3 ksin 36
the constants ¢, ¢, ¢, &c. may easily be determined from each
1 3 5% . .
other, the value of ¢ has been already found, that of ¢ and ¢
I
3 5

are as follows:

2 - * 5
g-—--' ,e+ss 14+ 36os -6 Sor
a variety of series are deducible from those of (8); I shall

only mention two of them ;
cot - cot 28 cot 30 i
zk—l + - &Co

L ]g—x 2k—1
1 sin® sin 2¢’ , sin 3¢
and ™ Sinb % sinzf + 7 singd &ec.

Returning to the formulee (1) and (2) by addition and
subtraction, we shall have when 7z is even

(2\/—1)”2”{¢vzz+n+(-—-1)”¢v—.zz"n}

A 24T w’+7; ) x +~"
L (sin o) + 'é (s'm 20)* + (sm 30)" + &b.
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o
Oz
=¥

and when 7 is an odd number,
(9“-1 )nzn{¢vzz+n+(—_l‘)"‘bv-—zz—n} —
=K - -3
Lo B0 LB
= f} (sin ) +‘3 oz 1? &y &
From these expressions it appears, that the reason why we
have succeeded in the integrations is, because we had so as=-

sumed y, that the sum, $o** " +4v™** " is a constant quantity ;
the same success must follow whenever this condition is ful-
filled: and hence, we have a method of discovering the sums
of a great variety of series, containing the powers of the sines
of arcs in arithmetical progression in their denominators, by

solving the functional equation Yot o —zz—":c This
is fortunately one of a class whose general solution I have

arrived at ;¥ itis
2% 49 cpU
_4/,” + — ¢

‘¢vzz+n+¢

2240 © cpx

X
¢x+¢-;

= or Y =
In the example I have employed n was supposed equal to
unity ; if this is not the case, we should have found

atebg a:’+a:
(2‘/"" l)n 2n( 1) - (sm 9)" T (sin 26)” + (sin 30)* — &e.

If in the functional equation we put ¢ == 1, and ¢z == tan =z,

K
then we have Yo = —: tan x, and
g 1\ sn . -z—{ akx — adn 25z '
(2‘/ 1) = (1) - I (sin 6)? 3 (sin 30)* + 5 (sin g0 &C.}
the upper or under sign being used as 7, is even or odd; if
= 1, the constant is zero; and we have

wlogx P Pl 23—z’ '
20 T 1sin® ~ 3sin 30 + 5 sin 50 ~ &e. ()

* See Philosophical "Fransactions for 1817, p. 202.
MDCCCXIX., L1
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this may be multiplied by éf, and integrated any number of
times in the same manner as (3), and the results would be

T 2k 2k
- gn) .y (og) €+&c+c =

1.2,..2R 1,2..2k—2
2k—1
=~ -3
. &tz 23+ x’-H" :
== T30 " 3% sin 30 + 5% sin 59-—-&0- (1,1)
k41 2k—1
a , (log x)z (log ¥) log z —
20 rz.zk4a + 1.2..2k—1 C + &e. = zk—l N
_—l 3_—'3 s___-s
o= er xz - 2;;‘:_ I - zl:zr 1. - — &e.
125t n 0 3 sin 38 *sin 58

and these constants may be determmed one from the other
in the same manner as the former. I shall only give the
value of the first, in order to compare the value of the series
to which it is equal, with the sum of the same series deduced
in another manner.

+ S;_;_—l- {xzslino— 3“:in30+ s‘s;nge "_&C‘}(I’z)
In order to ascertain the sums of series which contain cosines
in their denommators, we must use an artifice which I shall

now explain.
Assuming as before Yz = Ax+ Ax -}~ Ax3+ &c, and put-

ting v* for , we have
Yv** = Av** = Av** 4 Av*™ 4 &ec.
1 2 3

If we were now to'integrate this, we should introduce into
the denominator of any term »%—1 ; but we want to introduce
the same expression with the signs of both terms positive. If
we multiply both sides by (—1)” and then integrate, we shall
“have first

(—1) Yoo Av* (—1) 4 Av*(—1) 4 A0* (—1]" 4 &.
. 1 2 3
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And smce A (—1)% m: — (—1)° 7,)zzz+ 2 (— 1) 0 =
=@ +1)(-—-1) 2" we find

s (_l)z .vztz — _ ;}I}
Integrating each term separately, we have

. za—.(_' 4l 2% (—
2(""'1)“"”"” =____{A"’ v"—}-:) +A”v£+:) +A vﬁ-}-t) +&C}

Let this mtegratlon be repeated z times, it Wlll give

m<n . z(__,l) a3 8.
(—1)="(— 1) o= A (v*+1)" +Av(v*+xl))" +Av'o°(+ !I))" + &e.

[ kaiad

Let v = cos 91/—1 sin 4, and z —for % ; this becomes

[ a0

(*’2)"2”(—’1 ) e ‘pvzz{-n_(__l )"— 8 {A (cos 0)" +A(cos 29)"

+ Al + 8o ]

And finally,
(--2)” (—-1 2”( 1) ‘,mzz-{-n__ A(cos 8" + A (cos 29)"+ A(cos 30)" + &e.

= A 5 (cos 9)" + Aoy (cos zB)" + AT (cos 36)" + &e. (1’3)

~ The mtegratlons here mdlcated Wlll as in a former instance,
generally surpass the powers of analysis in its present state ;
but a contrivance similar to that which has been already
stated, will in many cases elude the difficulty: the artifice
consists in investigating another similar series arranged ac-
cording to the descending powers of the variable, integrating
it in the same manner as we have that marked (1,3), and
adding these two results; we shall in many cases have a func-
tion which is integrable, and the two series become equal in
the case of x==1. By commencing with the descending
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series 4 = Av i Av "+ Av + &c. multiplying by (——1)

and mtegratmg, we shall get the expression

"2.% “‘4% -G

(""’2)” l)z S,”(-——l) ‘VU B (cos 6y~ +A (cos 26)" +A(co 38)" — &

B -2 -3

A ’ x

= ‘P: (cos 8)* + é (cos 26)" + {}(cos 30 + &e. ( 1’44‘)
There occur very few cases in which it is possible to execute
the integrations in (1,8) and (1,4); by adding the two toge-

ther, we have

» 2%t + 2
(—2)r(—1)* 3n(—1) {xpvzz+"+¢ }——-A(;Zs;n +A<’ZOZZ’S)“
x3+x : ,

+'1:*"(;o—s—35)-n+ &e. (1,5)
Here we may observe that the new series is exactly double ei-
ther of the others (1,3) or (1,4) when =13 also, that the inte-~
gration on the left side can be executed any number of times,

whenever Jv**+" y™**7" is a constant quantity ; the forms
of the function ¢, which fulfil this condition, have already
been given. LetJz== -f”-, then A =1, A=-—1, A-_. 1, &(‘

2

and since v +* 4 Yp—#—" =1, we have |
=3
, F_ x+.t & -l—x a3+ '
(—2)" (_—1)3 =" (_1) = (cosB)"  (cos 28)* + (cos 30)* + &C'
These integrations are easily executed ; and commencing with
n==1, we have

o (1 o (a1 prm P L e

cos§  cos 20
In order to determine the constant b, put £ == cos § 4 /' — 1

sin §; then, since z in that case becomes L, we have

142by—1=2—2+2—24&c =
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hence b==0,and we have

=z ot =3

T4z 2>z 234z
1= 068 ™ Cosad + cos 30 &e. (1 6)

Continuing to integrate, it will be found that all the constants

are zero, and we shall arrive at the following theorem ;

R - -3

T4x z+z 23z

(cosB)* ~ (cos z6) + (cos 30)* T &e. ( 1,7)
Let x = — z, then it becomes

1=

x+1' ' z* +x w +,1- . .
—1= (cos B)* + (cos 20)* + (cos 30y + &ec. (1>S)

Putting x == 1 in both these, we have

)8 1

1 1
z (cos 8) '_'(cos 20) + (cos 30)" &e. (1"9)

I

—- l b
7z (cos 0)" + (cos 20y -+ (cos 30)" -+ &ec. (2,1)

I pro‘pose in the next place to determine the value of the
series

I 1 I

— : — &c.

2k {cos b)* sz(cos 20y + 32k(cos 30)" ‘ ¢ ‘
This may be accomplished by multiplying (1,7) by iif, and in-
tegrating ; this operation, being performed on it 2* times, will

produce the series whose sum is required; the first integra-
tion glves

bt 3 -2 =3
l K xz—vx T3 em x

log x
T 1(cos By T 2 (cos 20)" + 3 (cos 30 T &e.

X

If x==1, ¢ =0, the second operation gives

-x -2
(log z)* . x4ta a4z
1 +o= 1*(cos )" 2%(cos 20 &e.

2 2
fo=1 Cz,n"_' 1% (cos 0)* 2% (cos 28)" + &ec.

In order to determine ¢, , put x == cos § = 4/—1 sin 4, then
we have
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. 0> ,

) + cz,n= xz(cosz())"""‘ —-2 (cos g)n—l + &e. = Cz,n-—x‘
The equation Com= ot -z: being integrated, gives

.
=5+

Ifn=o 6, =b=— +—--&c =QS—-‘::—,-l
Hence cmx 1:- . —? + QS—:?;-I- and

2 ~1 2 —2 3 -3
‘lzg::) 2 + S = 1‘:(:;:9)" - zf(c:sxzb)" + ‘i(c:sze)" &e. (Q’Q)

These mtegratlons bemg repeated, we shall arrive at the two
following expressions :

2k 2Rz -
(log )2 (log ) c (]og :r:)
1.2...2k 1.2..2k—2 20 + &e. + Cak—2,n F+ Cokn =

o4 2 —2 3 —3
—_— x4z T4z z2+x &
= C. 2
12k(cos 0* sz(cos 26)* 3%k (cos 30) " T (2:3)

(10g w)zk“'l (]og w)zk—-l p + &C p _

1.2..2k+1 1.2..2k—1 2yn *Yakm T
1 2 —2z 3 —3
- 2o X E—
&ec.

12+ 1 (cos 0) * o 2R+ 1 (cos 2007 T 2R+ T (cos gyn -
It now becomes necessary to determine the value of ¢ ék’n,
which is equal to twice the sum of the series we are investi-
gating ; for if z=1

2 2 : 2
C — S— me— &C-
zksn 12kecos gy 2% (cos 20)" + 32K (cos 300"

For this purpose put in the first of the equations (2,3) x==
cos - 4/ — 1 sin 4, then the series on the right hand is equal
,» and we have for determining ¢, = the equation of

to czk,n-—

finite differences.
v=0* | v by/—1)2h—4
)n +( Y/

12400, 2k 1.2, 2k—2 1.2..2k—4

c4,n + &e. + czk,n = czk,n—u:(
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In order to integrate this equation, let us suppose ¢ sk O

represent the co-efficient of #* in the developement of ~——- ((r;,
where a(r)=14Ar4 Br + Cr' 4 &c.
then (fg;n =147, 1% + r’c 6. &c.
If this be multiplied by ar, it becomes
(—a—g-"l—)_-_-‘ =1 r"cz’n+ r‘c4,n+ r°c6,n+
r"A+r'Ac, 4 r‘AcM
B4 7Be,
4 C
But the co-efficient of 7* in this series is equal to € bt

hence
czk,n+ Aczk-—-z,n+ Bczk-—-4.,n+ &c. = czk,h—-l
This equation will become the one in question, if we make
A =— (9\/""'1) B — O/ —1) C=— (b/—1)° &e.

1.2.3.4 1.2..°

This produces .
8y/—1)? By/—1)*
PRV R V=) Y WAy

zk,n 1.2 1.2.3.4 2k—-4 n 2k
We have now only to determine the form of f(r), and this
may be easily accomplished since the values of ¢,  areknown;

for if we put z =o
f(N=14rc “-{-rc 4 °c 60T &c.
\ =1+2rS-;;—+ r"S'l.%-Tl-zr"Sf%—-l-&c.
Therefore ¢, , is equal to the co-efficient of r* in the deve-

lopement of
: +1 +1
1 +21‘"S—l:;- + 2r4§ - + &c.

(cos 78)»

Or if (cos )™= 1 - A fr B 6r4 C 6+ &c. then
. n



264, Mr. BABBAGE’s new methods of z"nvestz'gatz’ng the

=gs;—:-,§-+zA'02 e 2B ¢S =

6“8 = = -+ &c.
The quantity ¢, may now be con31dered as completely
determined, since it only depends on the co-efficients of (cos §)=,

CZk,n

and the series marked by SZ! =r, both which quantities are
known; the latter being given by the powers of # and numbers
of BernouiLLi, whilst the values of the former in functions
of n are given by LEGENDRE, in his Exercise de Calcul Inte-
gral, vol. i, art. 149, 155.

In (2,3) let x =1, and we have

1 1 1 .
Cotn™ 19(cos 8" 2%(cos zb)" + 3*(fcos 30 &ec. (2,4)

And if we put £ = v in the other series, it becomes
b ¢ (bRt (_02)"—‘ =, .
?{1.2..zk+l +|z 2kt 2 n+&CC + i 1.2.3 k--z,n+TCzk,n}_
sin 8 ' sin 26 sin 30
2k + Y(cos )" 22k+ '(cosze)'" 3 2k 1(“')5 30)

I
2

n —&e¢. (2’5)

If » = 1 this series becomes

tan § tan 20 . tan 30
.1'A’vk'|'l - 22k+l + 32'k+I — &e. (2’6)

The series (2,4) may be changed into another, which con-
tains sines both in the numerator and the denominator, for
it is equal to ' /
. T f sinb \n 1 sin 20 n _I__( sin 30 )n__..
7 Cakn 1% (sin 8. cosO) T (sin 20. cos ze) + 3% \sin 30. cos 30 &e..
But this becomes, since sin 4. cos § =X sin 2§

3 .1 [sinB\n 1 [sin 20\n 1 (sin 30.
BT (;Izn_ 1% (sin 29) —"?ﬂ(sin ”49) +5= 3% (sm 69) — &o. (2’7)
By applying the theorems (a), (b), (¢), and (d) to the series

whose sums we have now investigated, we shall arrive at the
value of many others which contain the powers of tangents




sums of several classes of infinite series. 265

and co-tangents in arithmetical progression, thus (1,9) com-
bined with (a) will produce

.k Ie_{c:_— 1 ' ___ (sin 8% (sin 20)* (sin 30)%
{ 1 + - &c } = Tcos 6)»  (cos 2H)" (cos 36)* ~ 8.

But the Ieft side of this equation is equal to £ (1—1)'==o0.
Hence

___ (sin 6y (sin 20)% {sin 30)% :
™ (cos B)» — {(cos 20)" (cos 30)* ~ &e. (2’8)

And if n = ¢k, this produces a series of tangents

0 = (tan )*— (tan 26)* 4 (tan gf)* — &c. (2,9)
By means of the theorems already referred to, we may in-
troduce into the numerators of each term of the series (2,4)
the even powers of the sines of the same arcs whose co-sines

occur in the denominator: putting / = =, we shall have
P g P

I l l.l——l —
z {czk,n-‘ T Czk,n-—-2+ 1.2 czk,n-—4— &e. } -

__ (sin B (sin 20)* 4 (sin 36)* - &Cf (3,1)

T 1*(cos O T 2%*(cos 20)" 3% (cos 30)"

And if # = 2/, this becomes

. 1 Li-1 } _
7 U2k,21 _1-~czk,2l_z+ 1.2 czk,zl-—4. &c. ¢ =
— (tan 9)” - (tan 20)* (tan 30)¥
128 PY + 3% — &c. (3’2)

If we call the sum of the series (2,5) A, ,» and if we apply
to it the formula (b), we shall have

] ll—x
A nx Ak,n—-z+ 1z A — &c. =

Rytmeg.

__ (sin 9)21‘*' 1 (sin 20y20+1 (sin 30)20+1 (3,3
12k+Tcos 9)” 22+ T (cos 20} 32h+1 o5 501" 8:3

And if n = 2/ 4 1, this becomes

l
Ak,zl+x T k,zl——1+ &e. =
tan 0)22"'l tan 26)2+1  (tan 30)2+1 R

e : ~ &e. (3’4‘)

""', zk+l - 22k+1 3zk+l

MDCCCXIX. M m
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In the equation (1,4) if we make Yo = tan” 'z, we shall find

(—e) (—1)°s"(— 1)_z{ tan—'l 2 L tan o zz-n}
et (e S — . x-l-.‘l?‘—l X x3+.t—3 xs-{-a:—s
( 2) ( 1) 2 ( 1) '_"— 1(cos 9)" 3(COS 39):; +5(COS se)u

If the mtegratxons here md1cated are performed, it will be

found that all the constants vanish, and ultimately that

PR e xda3 25 4575 — &C

» .

= T Teos O 3(cos 30)" + 5(cos 58)»" (8:5)
fo=—1

" ¥ 1 X

T = T(cos 8y " 3(cos 30)" + 5(cos 50)» &e. (8.6)

If we multiply (g,5) by 515 and integrate, we have

v r—zt 2323 P
z log o C= 1*(cosBy®  3*(cos 30) + 5*(cos 50)" — & (3’7)
fo=1C=o,let £ = cos §' + v/ —1 sin ¥, then we have

w0 sin¥ sin 3§’ sin 58’
T2 T 1%(cos 8)* T 3(cos 30)" + 5(cos 50)» &e. (3’8)

The equation (g,7) may be multiplied any number of times by
‘d— , and 1ntegrated and the constants thus introduced may be
determlned in the same manner as those of the equations (2,3);
these operations will give the values of series of the following
form : :

245! o x3pa—3 25 425
12k T (o5 gy 325+ (cos 30)" 52K+ (cos 50"
PR £3—x—1

Sg™5
z — e f.___f____ — &c.
1%%(cos p)" 3%%(cos 30) 5%kcos 50

Numerous other series might be found by satisfying the equa-
tion Y 4 ¢ —;_; =1, whose sums would be given by this pro-
~cess; and if instead of putting-:? for x, we had substituted 2z

for x, where the function « is determined by the equation
2’2 == x, many others would be discovered. This artifice is

we &C,
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only a particular case of a much more general principle, which
is of use in discovering certain values of the variable, in which
a series admits of summation, but which generally is not
expressible in finite terms. The principle is as follows: let
K denote any operation, such as integration, either with respect
to differential or finite differences, or any other operation, pro-
vided only K(X 4 7) = KX 4 KT Now let
Kyw=A z + Az A3x3+

Put ax, oz, ... "'z for x, and the results will be

Kyaw = A ax + A,ed® 4 A az’ 4

Kb’z = A o'% 4 A’a" - A3a3x3 -+

&c. &c.

K"~z = A" w0 - A A" b
By adding all these together, we shall have K{\lmj‘ + Yoz -
Y’z 4 &c. \!/ac""'l.l‘} equal to a series whose general term is
An{x + ez + Lo 4 &e. + u"""w} . Now supposing we can-
not perform the operation denoted by K on the function Yz,
yet if § is of such a form that Yz + Yaz 4 &c. 4 Yo" is
equal to a function on which the operation K can be executed,
then calling this new function ¢, we shall have

K¢ @ = SA,; {x‘-{- aw‘+..w"""w"}
And if «is such a function that «"z ==z, a great variety of
forms for ¢ may be found, which will satisfy that condition.
Now let z be determined by the equation z==ax, and r being
any root of this, we have re= ar = o’r= & == o"™'r.,
Consequently our equation becomes

Ky z=nSAr = n{Alr +Ar+ A+ A &c.}
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provided we put 7 for & after the operation K is executed;
that is, we have found the values of the series

Az 4 Az 4= A,2° - &,
in the particular cases of x which satisfy the equation ez =a.

Part II.

I shall now explain another method of deducing the sums
of a variety of series, which comprehend amongst them all
those which are contained in the former part of this paper ;
it rests fundamentally on the following formula, which have
long been known:

0= 1""— 2"} g"»— 4’7 4 &c.
1 = cos § — cos 26 4 cos gf — &ec.
¥ == cos § 4}~ cos 20 -} cos g 4 &c.
o==1 zn+x__ 3zn-}- 1+ 5zn+ 1 &e.
It is unnecessary to give proofs of these and other similar
ones which have been frequently noticed, as they may be very
easily demonstrated.

Let fx be any function of z developeable in even powers.

of x, then f(#)= A 4 Bx*4 Cz*+ Dz’ &c.
Divide both sides by a:” then it becomes
f‘”’ zk+ = —2— + &c. + K + Lz* 4 Mz*4- &e.

For x, put successwely 1z, 2, g%, 4, &c. and let the alter-

nate series be taken negatively ; these being arranged under
each other, we have

(=)
+ zg‘czk_—+ T zk+ zk-—z =7 + & + K+ Lo Mafs'
f(za‘) A B

T T ik z%k_zxzk__z — &c,— K — Lz*2"~~ Mz’e'—
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(37} e A4
+32kizk‘"+ 32y zk+ zk-—z i+ & - K Lo’ Ma%g'+
f(4) A B KT o4t ae
- 42(kxzk _ 4_2kxzk - 4:zk—2xzk—z~ &e. K Lz 4 Ma 4
&c. &ec. &ec.

If we add the vertical columns, we shall have on the left side
of the equation the series
] f(:c) f(2x) f(31") f(1.z‘) + &e. }

e T 3%
and the right side of the equation con51sts of three kinds of
terms, those which contain negative powers of «, one which
does not contain z, and the remaining ones which contain
positive powers of z. With respect to these last, they are all
of the form Qu* {12" — 2% e % i & }; and as the series
which multiplies Qa* is equal to zero,all those vertical columns
which contain even powers of # will vanish: the term which
is independent on z is -
K—K+4K—K+4 &c.=3K

and those terms which contain negatlve powers of x, may be

represented by the expression S'-?;. All the vertical columns
being summed, we shall have the equation

f(x) f(2x) f(3w) —
;;I;—zzk 3 &C--—AS~--+BS zk z+

+ O + &e. + 2K (A)

As the operations by which we have arrived at this expres-
sion have been given at length, it will be unnecessary to
repeat them with the slight modifications which would be
required for cases nearly similar. Thus, if we suppose the
function fr developeable according to the odd powers of

z, and if we divide both sides of the equation by #*+* and
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repeat the same process we have already explained, we shall
arrive at the following theorem :

f(zx) f(zx) f(3x) fl4x) -
12k+ 1 - 22k+1 zk+x - 4zk+1 + &e. =
—-AxS——+B38 zk — 4 &c. + £ K (B)

Let f(0) be any functlon of § developeable in the form
f(8) = A - B cos § 4 C cos 20 4 D cos g6 &c.
a very similar process to that which has been already explained
will give the
£(8) — £(28) + £(0) — &c. =2 ©
and if f(§) = A cos 6 -+ B cos 26 -} C cos gf + &c. a similar
course will produce the equation
f(6) + f(20) 4 f(30) 4 &c. = — 5 (o) (D)
If a function is developeable in even powers of z, then its
second function is developeable in the same manner, and so
are all its higher functions; therefore if f, and f are two func-
tions developeable in even powers of z, such that
fr = A'4- B'z4 C'2*} &c.
ffrz = A 4 Bz’ Cz*- &c.
Then (A) will become .
k f.fy(z) ff"(z:v) + f,f (3&) — &ce. =

134 U

=AS-Sr 4+ BS—Eo 4 &0 1K (E)

These theorems marked (A), (B), (C), and (D), although
they possess a very great degree of generality, are not entirely
without restriction; it appears at first sight that they are
applicable to a// functions which have the prescribed condi-
tion of being expansible in even powers of the variable; such
was my opinion of them when I first discovered them; but
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several results which were evidently incorrect, soon convinced
me that some limitation existed, of whose nature I was not
aware: it was not until some years after, that I found out
the cause of the fallacies which had perplexed me; and still
more recently, I discovered that the series on whose sum their
truth or falsehood depended, might be expressed by a definite
integral. By applying the criterion, which I shall presently
“explain, we cut off a great variety of series whose sums are
erroneously given by the method in question; whether this
criterion does not exclude some series whose sums are cor-
rectly given, is a point which I do not consider yet completely
decided ; the difficulties to which the application of acknow-
ledged principles have in this instance conducted us, appear
worthy of the attention of mathematicians. A more strict
method might have been pursued in determining the sum of
that part of the series which is neglected ; but thisin general
leads to such differential equations, as cannot afford us much
assistance. I have, however, given one example of this
method, and I have shown that when the part which had been
neglected, as being apparently equal to zero (but which is in
fact a finite quantity,) is added to the sum furnished by the
method of expanding horizontally and summing wvertically, the true
value of the series results. This confirms the explanation I
have given of the reason of the apparent failure of that
method. | , :
It will be sufficient to point out the cause which leads to
error, and to determine the conditions on which its existence
depends for one only of the series; suitable modifications of
the reasoning will readily suggest themselves for the others.
I shall therefore, at ‘present,‘consider the theorem (A). If



272 Mr. BABBAGE’s new methods of investigating the

we turn to the process employed in its investigation, we may
remark, that the vertical column Lz* (1*— 2°4 g~ 4’ &c.)
has been neglected, because the series which enters into it as
a factor is equal to zero; so also the vertical column Mz* (1* —
2'4- 3*— &c.) is neglected for the same reason, and similarly
for all the remaining vertical columns. Now, although it
would be perfectly correct to omit any one, or even any finite
number of these vertical columns, as being multiplied by a
factor equal to zero, yet it is not legitimate to neglect an
infinite number of terms, each multiplied by zero, unless it
can be proved that the sum of all the terms so multiplied is
not an infinite quantity : this, then, is the latent cause of the
false results at which I arrived at the commencement of these
enquiries. I shall now explain how they may be obviated, or
rather how to assign the condition on which the truth of the .
theorems just deduced depend. We have considered the
series of terms
Lz® (1°— 2°4 g°— &c.) 4+ Ma*(1°— o*°+ g'— &ec.) +
o Ma®(1°— 2"+ g°—&ce.) 4 &e.
as equal to zero. Any one of the series which here multiply
the powers of x, may be considered as arising from the series
1y — o'yt gy Ko,

When y = 1, call this series K,(y), and instead of making

==1, let y =1 -~ 0, which differs from unity by the infinitely
small quantity o; then we shall have

K, (140)==¢, ¢, ,0 4 ¢, 0+ &c.
Where .
€= 0= 17" @™ f g¥_ &, €, == 17 9P H L g2 g,

by substituting this value of K,(1 -} o) in the series we had
neglected, we shall find
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{La*e,  + Ma'e, ,+ Na'e, ,+ &. }

40 {Lx’cz,l-[- Mz, ,+ Nac, ,+- &c;}

4 o"‘{ Lz, ;4 Mz, == Nz, - &c. }

+o3{Lxc i+ Ma'e, 4~ Nz 3t &c }

+ &ec. &ec.
The first line vanishes on account of the value of ¢, ,, and
since o is an infinitesimal, the second line will be larger than
the sum of all the rest, provided the multiplicators of the
powers of o are finite; if therefore the series La*c, -} Mz, ,
- Nz, .+ &c. is finite since it is multiplied by o, we may
neglect the whole of the above expression: our next step
must be to determine whether the series

Lw’{ 13— 934 go— &c} -+ M.z:“{ 1°—2°4 35--*&0.} -+
-+ Nw‘{ 17— 2’4 g'— &c. } 4 &
is finite or infinite. It has been observed by EvLER, that the

following relations exist between the direct and reciprocal
powers of the natural numbers.

1—¢ 4 g—4 4 & = + 2-—7-:-;-{1+ -;;—l- ;1;+8cc. }
P 93 gl g3 GiC == — ‘;3{1 +nt Gt}
1°— 2’4 g° — +&c-—+2 {1+ +56+&c}
1"— 2’4 g"— 4"+ &c, = —2 —w,,l{ 14 5+ 5314+&c. }
&ec. ’ &ec.
These latter being substituted for their equals, we have

— oL 2 4 5 5 + & )+2Mx°”3”(16+ s+

P

+ & &c. | — oN P + % + % 5+ &) + &
The series which now multlphes each term is in-all cases
MDCCCXIX. Nn
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less than g, consequently this expression will be finite or in-
finite, according as the series.

1.2, .. vons
— Lx’-;f—;i + M-r4l;?'s —— Nxﬁl—;g- + &ec.

is so or the contrary: the product 1.2...n may be expressed
by means of a definite integral, thus:

1.2 fido (1og )" [o=1]

v=1

These products being replaced by the integral, we have
.l.fdv{—-—L(ﬁ-)z(log -x-)3 + M(i)4(log - )S——-N(—:—) ( ) + &ec. } [w—- x]
_—:--jdvlog { L(x log ) +M(—-— log — ) -—-N(—; log 7) +&c.}

Now in order to determine the sum of this series, which evi-

dently depends on the function f(x), let us assume
f(x) A B —
22k - 22k T k=2 — & —K = x(w)

then we have
x(%) = Lz*+ Ma*~4 N2*+ &c.

And if we put =" log -~ instead of @, it becomes
22 log ) = — L[+ log 5"+ M( log +*— N[ log L)+ &,
And the sum of the series in question is

;:z—fdv log —lv— . (x‘/ — log — ) [v =°]

v=1

If therefore this definite integral is finite, the theorem (A)
will give correct results. A more convenient form for inte-

gration may however be obtained by the following conside-
ration ; the series

L-:—‘r-:f.1.,2.3 + M «;f;- 1.5+ N -f; 1..%7 4 &c.
will always be finite, if the following series
A+4B (—f; )21.2.3 4 C (-—%)41.2..5 4D (%)61.2..7; + &c.

is finite, because this series when prolonged to the terms
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Mz"4= N2" 14 &c. will have its terms each greater than
“the corresponding terms of the other series. Now this series
is equal to

Jaot (2 Tog | = (F)

I shall now apply some of the theorems to the investigation

of the sums of series, and then explain a method which (when
the equations to which it leads can be solved) willin all cases
render them correct. And first let f(§) = (cos f)*=(1— ;9-; +
b4

1.2.3.4
- another, which also proceeds according to the even powers

of §; first let k= o, then comparing this with (A),-we have

L = (cos §)»— (cos 26)" - (cos gb)" — &c. (3,9)
Let us now examine if the definite integral is finite, it is in this
case.

— &c.)" this series is capable of being expanded into

F__ﬁ log —
04/ == 1 7 )
Jdo{ cos =" log V= fpdv‘(if iy

2

1 19
+7rlog:0-&n_
& T
J

]

= Jdo[* 1= ,)Z
=‘;l7.‘{ 19+_3:_ . 1 +n:t—z~l ! 7+ &c. } [:2:]

| (i 14 (2=n) ﬁo.-, 14 (4—n)—
7w '

=

+ 3],

If # is a whole positive number we already know that the
series (8,9) is correct; if zis a fraction the series which ex-
presses the value of the definite integral is finite for all values

. . L
of 8, except such as are contained in § = — ~—

2 being any
whole number; if 7 is negative, then the series is finite for all
positive values of 0; it appears then that whatever be the

value of n iff is positive, we have
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; = (cos 8)* — (cos 20)* + (cos 300 &e.

From the theorem (A) we may readily determine the value

of the series

1 ‘ 1 1
1%4(cos 0)“ T 2%(cos 26)" + 3% (cos 30)" 8.

For let f(§) = 7 a),, = A4 A6+ B'né"+ C;l9°+ &ec.
And the sum of the series required will be
+A'GS ; +B6S—¢ zk 4+8cc + %K . 5

Whlch is precisely the same sum as we have already found
in (2,4), except that we now find that it applies to fractional
or surd values of #, as well as to whole numbers.

Let us next suppose f(§) = (tan §)!*+ = T, *+* | T392?+3
-+ T50’l+5 -+ &c. this give the series

(fan 0)21"" __(tan 28) 2l41 (tan 36) zl;]-_l. — &, =
TR 2k+l 32k+' T

=TS8 —%1 + TS —oi= S+ &

The definite 1ntegral in this case being

8
. 2;
—140 2041
10 zl+n dv{ 1 o -
A B e B o=
— B C D
—— )ZZ-H{ + ?.+ x+4g. + !+6_9_ T & }

6
2 —

. ' 2 — 4~ co $
Since = +v"6 =A-4-By "4 Cv ™ &c. thisisalways finite

2 wn
V7

1

if § is positive, because it is less than A - B 4 C +4 &c. which

is equal to zero.
In the former part we could only determine the value of

the series
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1 ¥ I 1

(sin 0 T (sin 28)" + (sin 30)" 8.

when 7z is an even number, nor will the method now em-

ployed enable us to find its value when # is odd ; the reason

of this is that

. et |8 03 65 i,
(sin 9) =(T T Lz + 1.2.3.4.5 &C')

is developable in a series proceeding according to the even
powers of 6§ only when 7 is an even number, if z# is odd, it
proceeds according to the odd powers.

The theorems contained in this second part are applicable
to a very extensive class of series which have not, I believe,
yet been considered. In (A) let f() == cos® f == cos (cos §)
and putting k=0 we have

COs 1

== cos® § — cos® 26 -}~ cos® gf — &c. (4,1)
The definite integral which is the criterion of the truth of this
value, is
)
B c D
Jfdv cos - " =A + — -+ 7 + 5 + &c. [”"'o]
142~ I4+4— 146~
w xw x
B C D
+ =5+~ + =5 + &
l——z; 1——»4; ’ 1-6—;

And this is always finite unless 6 is an even submultiple of o ;
if we make k=1 and k==2, we shall have the following
theorems, which are true with thg same restrictions.

+1 sin 1 6 cos 8 cos *zh cos *30
cos 1S9 f 22— =0 + 2B & (4,2)

1? 2* 3*

=+ gsmx 84/ sin 1 cos 1y -
CoS 1. S +6 S o (1234.+T)-

cos'*y . cos %20

b
o e e, (48
If £(6) = (cos "6)", since this is capable of being developed
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in a series proceeding according to the even powers of 0, we
shall have if 2=o

(cos™T1)™ .
———= == ((c0os "f)"— (cos "2f)"4- (cos "gf)"— &c.  (44)

2
and the definite integral is finite in this case, whenever § and
= are incommensurable: we may therefore in the same cir~
cumstance have the value of the series
{cos "h)™ {cos n28)™ (cos "30)m
— -+ = &ec.

124 22

The theorems marked (A) and (B) in this paper correspond
with that marked (12) in Mr. HerscHEL’s memoir ¢ On various
points of Analysis,” printed in the Philosophical Transactions
for 1814,; with the first of these it coincides when #z is an even
number, and with the second when it is an odd one: the
theorem alluded to is

S {(___l):c-l-! . f(sx9)+ (_1)nf(s—w9)}=oL(2). 05”9”"]"21‘(2)' wn_zen—-z_{_ &e.

xn . 2

2$

__1)"2\13’
where L=1—14 1 — &c. =1 *L(2) = . B

.22 27pmm

Now this latter expression is the value of those series which
I have expressed by Sk ,,, . Both methods give the same result,

and as that result is very frequently erroneous, I shall con-
firm the truth of the explanation I have offered, by shewing
in a particular case, that if the sum of that part of the series
which had been neglected as being equal to zero, is found
and added to the other part, the result will no longer be
erroneous : the example 1 shall examine is the series

1 1 1 &
1+6* T 1426 + 1F3% 62 1+4"9’+ c.

In Mr. HERSCHEL’S theorem, making f(¢) = a4 2, 4 2,0+

&c. — 1+0t\/

— T - we have @ = 1, and the equation becomes
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1taly/—i  I—zly/—1
i [ ),

2

-

e L
14ab* T 2 or

or  §(—1)"*?

7= !-;9‘ - 1+Iz’9" + 1+!3’6’- — &c. (4"4‘)
The same series being summed by the theorem (A) in this
paper gives the same result; but then the theorem alluded to
only declares this to be the true value in case a certain series
is finite, which series is
+ 01.2.83 + 0*.1.2.8.4.5 - 6°. 1.2..7 -} &c.
but this series can only be finite when 6 is actually equal to
zero: the method which I have explained in this paper points
out that the equation
%: l_:ea S l+12q,ea. + 1+3sz &C

can only be depended on when § = o, in that case it is known
to be correct. - I have already stated that the reason why the
value of the series so found is incorrect, is that the series
— " (1" — 24 &c.) 4 6°(1*— 2" &c.) —6°(1°— 2°+ &c.) 4 &c.
has been neglected because the coefficient of each term is
zero. Ishall now proceed to investigate the sum of this series,
and shall prove that it is equal to a finite function of 4: let

y=c(1"¢"—2% "4 &c.) - *(1%*— '~ &c.) 4 &e.
then y is equal to the sum of the series whose value we are
seeking ; if c=0,/—1 and x==o, differentiate y twice relative
to @, and multiply by ¢, and we find '

dy = ¢*(1*%"— 2%* - &c.) - (1% — 2%} &e.) - &c.

Hence the equation for determining y is

dz
€y = (1 Q% &C.) e

()
And the value of y is
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-” x
-~ zx__sx PP
— O ¢ T cf.c
— { £ f T dr—e °fe (M:+ex)=}
These mtegrals must be taken between the limits £ = —— e
and x = o, putting ¢*= v this equation is changed into

I I
— Sy v T gy gy e YT }
y...z{v f(x+v)=” dv v j([_‘_v)3 dvd
where the limits of v are v =0 v = 1, in the latter integral

. .
put v == —, and we have

1 1 1 I EY
SR QY . B op_r=t 7T V=1 1y
y = z{vf(l_l_wv dv+uf(l+u),u du} {v._x e
1 I
P c = U1 iy T
but this is equal to —v° [ T Y ¢ dv between the limits

hence

v==0 and v = oo, which is equal to — -
t 2¢ sin o

':-—-—‘—-—’_5—;——0(1’ 2’4 &c.) + ¢*(1°— 2*4- &c.) +
2¢ Slll—c- + C( — + &C.) + &C.
If ¢ = 04/ —1 we have
s s = — (1°— 2" &cC.) 4 01— 2% &c.) -

w

e{ 7 -5 et (1°— 2 &c.) 4 S

€ s §

This being added to L the value given by the theorem (A )

produces
= 1 1 1

1

X o] . e

2 { EEE } T 142% +'l+3"97‘ 1464 + &Q‘
06 .

8
which is the same value that Eurer had assigned to this
series. »
From the value which has been found for y, or for the series
c(1r— e &c.) 4= ¢*(1*— 2* &c.) 4 &ec.

I am inclined to conclude that although the series 1°#— g}~
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g'»— &c. is equal to zero for any finite value of 7, yet that
when # is infinite, the sum of this series is also infinite.

It was my intention to have produced from several of the
series whose sums have been found in this Paper, the values
of several continued products; but the length to which it
has already extended will prevent me from more than
merely noticing, that many very curious ones will present
themselves by integrating the series whose sums have been
given.

Since this Paper was written, in a conversation with M.
Poisson, I mentioned one of the series which it contained, and
remarked, that the principle employed led to many erroneous
results; that gentleman observed, that many years before he
had been led to series nearly similar, in endeavouring to inte-
grate the equations representing the planetary motions, by
means of series arranged according to some other functions
of the time than the usual ones of the sines and cosines: he
~obligingly showed me some of his papers relating to this sub-
ject, in one of which was a series which in a particular case
became the one I had mentioned; the mode of investigation
by which he had arrived at these series he had however laid
aside, because it rested on the sums of the diverging series
17— 2*fe g*"—. &c. on which he observed we cannot depend.
To the same distinguished analyst I am indebted for some
farther information on this subject. M. Porsson was one of
the commissioners appointed by the Institute of France to
examine the manuscripts which were left by LAGRANGE,
amongst these was one entitled ¢ a method of summing
series,” which depended on the values of the same diverging

MDCCCXIX. Oo
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series as those used by M. Poissox and myself; unfortunately
it is very short, and its illustrious author does not appear to
have resumed the subject: possibly the erroneous values

which it gives for the sum of certain series might have
caused him to reject it.

C. BABBAGE.

March 25, 181g.



